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Total equations of motion of an incompressible f luid are investigated taking account of relaxation 

phenomena for viscous stresses and heat flux. In the K. 1. Strakhovich class of solutions the fluid flows are 

considered that contain a strong hydrodynamic discontinuity. The conditions of motion are analyzed under 
which the dissipative function is negative. 

Mass, momentum, and energy are transferred with a finite rate. This fact plays a great part in scientific 
problems associated with fast thermal and hydrodynamic processes in natural phenomena and in physical and 

power engineering equipment. The object of the present study is the effect of the finite velocity of the propagation 

of perturbations (relaxation of viscous stresses, relaxation of a heat flux) on the dissipation of mechanical energy 

in motion of an incompressible fluid. The objectives of the present work were: 1) to construct physically informative 

new analytical solutions for the total equations of motion of a viscous heat-conducting fluid; 2) to analyze the 

behavior of the dynamic and thermal parameters of an incompressible flow that contains a strong hydrodynamic 

discontinuity; 3) to reveal conditions under which the dissipative function becomes negative. 

The plane two-dimensional nonstationary flow of an incompressible continuous medium is determined by 
the equations [1 ]: 

dv i Op OTik . Ov k 
P--d-{=PFi--~ixi + Ox---k' Ox k - O ;  i , k =  1, 2; (1) 

dT Oqk d O 0 
t, cp d t  - + ,t, ; d5 = O5 + Ox-S  ; (2) 

?x, + ox2), p, co-const. 

To allow for the relaxation of viscous stresses, we use the Maxwell rheological equation of state of an viscoelastic 
fluid [2 ] 

Y Dt = 2#eij ' (3) 

DRq _ dRq 
m 

Dt dt + m [Rik Wkj -- Wik Rkj -- l (Rik ekj + elk Rkj)] . (4) 

when m = 0, differentiation operator (4) is a substantive time derivative; when m --- 1, l = 0 is a Jaumann convective 

derivative; when m = 1, l = __+ 1 are two Oldroid derivatives. 
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The rheodynamic behavior of a nonlinear viscoplastic fluid is determined by Z. P. Shul 'man 's  generalized 
model [31 

[ l / n  J n  

A~l / m 1/  m . n / rn - I r i j  = 2 + tt AI  eij , A I  = (2el  k eki) 1 /2  , (5)  

where xo is the yield limit; n / m  is the flow index. The classical model of a viscous Newtonian fluid has the form 

ri j  = 2peij .  

To describe heat transfer, we use the Fourier law qi = - 2 O T / O x i ,  as well as the Maxwell-type relaxation 
model [4-6 ] 

dq  i OT 
qi + y l  a t  - 20x---~' i =  1,  2 .  (6) 

Certain problems of theoretical substantiation of the Navier-Stokes equations with allowance for the 

relaxation of viscous stresses and for heat-flux relaxation are also given in [6-8 ]. The existence of a negative 

dissipative function was noted earlier for turbulent flows in [9 ] and for an accelerating compressible gas flow in 

[8 I. 
A line of strong discontinuity in incompressible fluid flow can have various physical origins. In particular, 

it is an effective model of a technological device in flowing through which the parameters of the fluid (density, 

viscosity, pressure, etc.) change sharply. The dynamic conditions of compatibility on the line of the strong 

discontinuity have the form [1 ]: 

On" v + p ( N -  vn) + cp = 0 ,  

where Pn is the vector of surface stresses; Vn is the velocity component normal to the discontinuity line; N is the 

displacement velocity of the discontinuity line. 

In [ 10 ] K. I. Strakhovich indicated (without giving a hydrodynamic interpretation) a class of exact solutions 

for the equations of isothermal motion of a Newtonian fluid. In the present work this approach is developed and 

generalized to the case of nonisothermal flow of rheologically complex fluids. Namely, on the basis of Eqs. (1)-(4), 

(6) in the class of flows 

v 1 = - b = c o n s t ,  v 2 = o V ( x , t ) / o x ,  p - p o ( t ) = p a l l ( t ) ,  

Oll + cr22 = 0 ,  oij = r i j / p  , F 1 ~ 0 ,  F 2 = F =- const ,  

OV b OV 
Crl2- Ot -~x - x F  + C ( t ) '  t >--0,  

T =  T ( x , t ) ,  q~ = q ( x , t ) ,  q 2 = 0  

we will consider a self-similar variant in which the desired functions depend on one argument h = x + at ,  a = const. 

When m -- 0.1, l = 0, we have 

d V  
Vz - d h  - (a12 + h F ) / ( a  - b ) ,  ~p = v - y (a  - b) 2 , 
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d a l  2 
(~0+rnYal l )  ~ = a l 2 ( a - b ) - v F - m y F a l l ,  P o = C ~  (8 )  

a d a l  1 ] 
11 + Y (a -- b) dh J (~ + roYal l) = royal2 [ y F ( a -  b ) - a l q  �9 

These  equations are correct for both isothermal and nonisothermal  flows and they do not contain constraints  on 

the rheological model of viscosity. 

Assume that  a s trong hydrodynamic  discontinuity moves with a constant  velocity: xy = - a t ,  a < O. On one 

side of the discontinuity the fluid is immobile: 

Vl.  = 0 ,  V2. = 0 , q. = 0 ,  rq = 0 ,  p . ,  T . ,  p .  - const ; 

on the other  side, the flow is de termined by formulas (8); dynamic  compatibili ty conditions (7) are  of the form: 

A = d ( a  - b)  = p . a  < O , a ;~ b , Po - A b  = p*  , r l 2 y = A v 2 y ,  

q.i + A c p  (Ty  - T . )  = b p .  + A (v2 j  + b 2 ) / 2 .  

First, using Eqs. (8), we will consider the isothermal flow at v, y = const. Let m = 1 ( Jaumann derivative); 

then  for e l  1 (h), al2(h) we obtain a dynamic sys tem which has a singular point with the coordinates: 

1 2 2 1 2 2 
, Wo/(C + 1) = C W o / ( C  + 1) = - C12 Cll , 

C12 = C r l 2 / 0 , F )  2 w 2 /  , Cll  --- o.11/(7/7)2 2 2 , w O =  (710 , c =  ( a -  b ) / ( y F ) .  

(9) 

Analysis has shown that  the following variants are  possible: 1) c 2 + 1 < w 2, singular point (9) is a saddle;  2) 

w~ < (c 2 + 1) < 2w02, c 2 < 1, and then for c > 0 there is an unstable node and for c < 0 a stable node; 3) for 

9-Vrg(I < c 2 < 1 point (9) is a focus, which is unstable for c > 0 and  stable for c < 0. In the given class of solutions 

the singular  point "center" is absent.  

Thus ,  the stabili ty or instabil i ty of singular point (9) depends on the sign of the complex c that  carries 

information on the two-dimensional i ty  of the flow, namely,  on the orientation of the force F and  on the fluid mass 

flow through the discontinuity.  We also note that  in formula (8) for v2 the first term characterizes the effect of 

viscous friction forces, and  the sign of the number  c determines the sign of the second term, which describes the 

effect of the mass  force on the t ransverse  velocity. 

In what  follows we will consider two variants: 1) a flow downstream of the discontinuity in a semi-infini te  

region, x E ( -0% x/); 2) a flow in the j-region between two strong discontinuities, x E [Xs, xy] ,  Xs = hs  - a t ,  

h s  < 0. Downst ream of the second discontinuity we assume a uniform flow: 

v 1 = - b * * ,  v z = v * * ,  p = p * * ,  T = T * * ,  z q  = 0 .  

The  conditions of dynamic  compatibil i ty on the second discontinuity are 

x = x s :  A = p ( a  - b)  = p**  ( a  - b**) , p** - p .  = Ab**  , 

Tl2,~ = A (v2~ - v**) ,  

A c p  ( T  s - T**)  = (b - b**) . + ~ (b  + b**) + ( z 1 2 , s ) 2 / ( 2 A ) .  
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This approach allows us to assume that the heat capacity is piecewise constant; here, to simplify the 

representat ion of the formulas we assume that Cp = c~ = c~*. The fluid mass flow through the j~-region is characterized 

by the number  A < 0. 

We note that the flow between two strong discontinuities was applied in gas dynamics [ 11 ] as a model of 

a piston with longitudinal holes. The  nonlinear dynamic and thermal properties of the vorticity curl in a viscoelastic 

fluid flow containing a strong hydrodynamic  discontinuity was investigated in [ 12-14 ]. 

If there  is isothermal flow in the absence of mass force (F = 0), then at m = 0 for the vorticity we have 209 

~= a 12/tp. This means that the vorticity curl is directly proportional to the viscous tangential stress if the fluid is 

ei ther Newtonian or viscoelastic with the operator of the substantive derivative in the theological equation of state. 

A l inear  re la t ionship between a~ a n d  r12 for certain isothermal and nonisothermal  flows of Newtonian and 

viscoelastic fluids was noted earlier in [12-14 ]. If relaxation of viscous stresses is absent 0' = 0) and the fluid is 

nonlinearly viscoplastic (5), then in the class of motions (8) r[2 = rl2(aD is the fractional power function 

l / n  rn] = ( ~ ) n l m  ro____o__ 
r l ?  (2r + , u l /  

Next,  we will consider a nonisothermal flow and assume that 

V = V o f ,  Y = F 0 / ,  ~ . = 2 0 f ,  Yl = Y l 0 f ,  f = f ( T ) > 0 ,  c p = c o n s t ,  

i.e., the shear-wave velocity and the speed of heat propagation are constant. Then,  the solution downstream of the 

discontinuity h; = 0 has the form: 

Vl = - b < O  , v2 = crl2/(a - b) , p - po = Pa l l  , r e = O ,  

dh - ~Pof(T)  b) 2 a12 a E ( 0 ,  1 ] ,  
a--Z--bb ds , ~o = Vo - Yo (a - , a - -  al2,j ' 

Crl 1 = 0"11 ,j exp 
h p al2 

- y ( a T - b  ' q -  2 ( a -  b) A c p ( T -  r = ) ,  P r =  . 

The  temperature is represented in the dimensionless form 0 = ( T  - T o D / ( T j  - ToD; the Newtonian fluid, Y = 0 ,  

Yl -= O, 

o = J - (~  _ j )  e r  Zc 
2 ( 2 - a )  , a = P r ,  ~ > 0 :  

the viscoelastic fluid displaying Fourier heat conduction, Yi = 0, 

0 = cr ~ - ( a 2  - aa) Pr  Ec (1 - M 2) (1 M 2) Pr 
2 ( 2 - a )  , a =  - ; 

(lO) 

the viscoelastic fluid with a relaxing heat flux 

_ 2 a (a 2 - a ~) Ec [Yl ~--1 + (M-2  1) 2 -1 } 7 M1 (1 - M 2) (11) 
0 - - a  - 

- 1  , a M 2 (1  - M ~ )  [M-2 (Pr) -1 - Yl Y ] (2 - a)  Yl 

Here ,  the Ecker t  numbe r  conta ins  the fluid slip velocity on the in ternal  side of the d i scon t inu i ty ,  E c  = 

v~j/  [cp(Tj - Too)1. 
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Fig. 1. Relationship between temperature and viscous tangential stress: a) 

Newtonian fluid; 1) Pr  = 1, Ec = 1; 2) 5 and 3; 3) 5 and 5; b) viscoelastic 

fluid with Fourier heat conduction, �9 > 0; 1) Pr  = 1, Ec = 1, M = 0.75; 2) 5, 

3, and 0.5; 3) 5, 5, and 0.9; 4) 5, 3, and 0.9; c) viscoelastic fluid with thermal 

relaxation, �9 > 0, Y/Yl = 0.3; 1) Pr  = 1, Ec = 1, M = 0.5, M1 = 0.6; 2)5, 2, 

0.5, and 0.6; 3) 5, 3, 03, and 0.99; 4) 5, 1, 0.9, and 0.99; d) viscoelastic fluid 

with thermal  relaxation, ~ < 0, 7/71 = 0.3, M = 1.1, M1 = 1.2; I) Pr  = 1, Ec 

= 1 ; 2 )  5 a n d  1 ;3)  5 a n d 3 .  

In the semi-infinite region the boundedness condition for solving Eqs. (10) and ( i1)  has the form: a > 0. 

This  means that the flow of a viscoelastic fluid having Fourier heat conduction occurs in a subsonic regime, 

M 2 < 1; if there  is also thermal relaxation, then we should have M 2 < 1, M12 < 1 or M 2 > 1, M 2 > 1. 

From the formula for the dissipative function �9 = po{12/g3 we conclude that when M 2 > 1, the dissipative 

heat generation can be negative in the supersonic viscoelastic flow. Consequently,  when M 2 > 1, M 2 > 1, we will 

have �9 < 0 for 7 > 0 and 71 > 0 in the semi-infinite region downstream of the discontinuity. In order  to obtain 

< 0 in a fluid with Fourier heat conduction, we must set up still another  strong discontinuity h = hs < O, v** = 
O, h E [hs, 0].  The  solution (10), in which Too = TO and a < 0, is physically meaningful if both discontinuities are 

the jumps of heating, Tj > T. ,  T s < T** and if at a small but the finite value of a s E (0, 1) the following estimates 
are satisfied: 

p * * < p  < p . ,  p ,  >p** > 0 ,  T** > T.  > T 0,  b** > b > 0 ,  

2 p . > a ( a - b ) ( p . - p ) ,  2 ( 2 - a ) + a E c < 0 ,  

where 

_ b 2 
Cp (T 0 -  T,) = p.bA 1 + -2-, Ts < 7"/. 

We will give some calculation results typical for this problem. The  dependences 0 = 0(a) are presented in 

Figs. l a - l d .  From these figures we conclude that the effect of the parameter  Ec (in particular, of the slip velocity) 

on temperature  is qualitatively the same both in the Newtonian and viscoelastic subsonic variants (Figs. la and 

lb) .  If thermal  relaxation is taken into account, then the temperature fields in the subsonic variants (Fig. lc) differ 

considerably from one another ,  depending on the interval in which the number  cr is located: either a E (0, 1) (lines 

1, 2, a m 0.5) o r a  > 1 (lines 3, 4, a --- 3.5 ). In the supersonic regime with negative dissipation (Fig. ld) a strong, 

both quantitative and qualitative, effect of Ec on O(a) is observed. 

Let us consider the flow in the y-region between two discontinuities with allowance for the mass force 

F ~ 0. We begin with the particular ("sonic") variant in which ~p = 0, i.e., M x = 1. From formulas (8) at rn = 0 we 

find 
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Fig. 2. P roper t i e s  of heat  field for viscoelastic fluid with Four ie r  heat  

conduction. 

tYl2 = F/~ ( T ) A - I  ~ I ) - '  (a P~---~ [1 + f i  (T) d = ] ) 2  A . (12) 

We can recognize conditions under  which �9 < 0 in the vicinity of the discontinuity h i = 0. Here  the effect of negative 

dissipation is due to the temperature  dependence of viscosity. For the sake of definiteness we assume that # (73 

< 0, which is t rue for many incompressible fluids. Analysis of solution (12) makes it possible to establish that: 1) 

the discontinuity hj = 0 must be a jump in heating, Tj > T. ,  p < p . ,  and the discontinuity h = Its < 0, a jump in 

cooling, Ts > T**, p <p**;  2) the "thermal" Mach number  is smaller than unity, M12 < 1; 3) it is necessary to 

satisfy the following joint inequalities that allow one to estimate p . ,  F 2 and the temperature  jump: 

f i r ,  P r ,  r -  - , -- < ( b . . p . / A )  b2. " 
/, 

A (b + b**) b > b** = a ( 1 -  P~**) - A b * *  < p .  < - - ~  , (13) 

2cp (Ti T.)  > F272 (l  + ~-~) b 2 - - , v** = p F h s / A .  

The  acquisition of these estimates terminates the study of the "sonic" variant. Note that at F ~ 0 the solutions 

presented here  have a local character  along the coordinate y and are exact on the line y = 0. 

The  directions of the force F and of the fluid mass flow through the j-region are orthogonal to each other. 

Let us discuss the effect of this two-dimension factor on the structure of the solution. 

We assume that the temperatures of the fluid in the regions (*), (l), and (**) are constant and different; 

q.i = qs = 0. When m = 1, the analysis of singular points (9) in the region between two discontinuities is valid. The 

solution has a physical meaning if the fluid is heated at the first discontinuity, T > T.,  p < p , ,  and cooled at the 

second, T** < T, p < p** and if inequalities (13) are satisfied. 

The  Maxwel l -Oldro id  self-similar fluid flow (m = 1, l = 1) in the j-region between two discontinuities for 

cp,/z,  ~l, 7, Yl = const admits an analytical description: 

P - r l l  = P0 = const ,  v 1 = - b ,  v 2 = (a12 + h F ) / ( a  - b) , 

a l l  = S l l / E ,  E = e x p z ,  z = h / [ y ( a - b ) ] ,  h E  [hs, 0 ] .  

In an isobaric case (sl I = 0 ) ,  when the pressures of the fluid in the regions (*), (/3, and (**) are constant and 

different,  we have: 

1;12/r12,b = 1 + (% -- 1) (1 + E l ) ,  rl2,b = H F / ( a  - b) ,  

Tb = P 7 2F2/2 ,  qb = 7 (a -- b) ~ b ,  Cbb = l 'F2 / (a  - b) 2, 
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Fig. 3. Properties of heat field for fluid with viscous and thermal relaxation. 

_ M2 1 (1 -- E - 0 )  D 1 M2d 1 + O 2 M2d 2 M + ~ [ d1 d-'-~ ' 

( % -  1)(M 2 -  2) (v 0 -  1) 2 v 2 j ( a -  b) 2 
= _ , V 0 = , 

~Pl (M 2 -  1) ' ~02 (M 2 -  1) v F  

k j =  q / -  1 ~P2 ~Pl , M 2 =  M 2 P r T l  _ I D =  
qb M2 D1 7 ' M2 

d 1 = M2/(1 - M 2) , d 2 = 2d 1 , D i = D + d i ,  E i = E di - 1 ,  i = 1 ,  2 ; 

~----~7. = I + ~ 1  (1 + E 1 ) - - ~ P 2 ( 1  + E 2 ) .  
I o  

(14) 

Here  vo is the Froude number.  From Eq. (14) it follows that the dissipative function depends nonlinearly on the 

viscoelastic Mach number.  The  effect of negative dissipative heat generation is observed in both supersonic and 

subsonic flow regimes. If M 2 > 1, then ~y < 0 in two cases: 1) the Froude number  is negative, v0 < 0, i.e., the 

directions of the mass force and slip velocity are opposite; 2) the Froude  number  is positive and such that 

(vo/M2) > 1. If M 2 < 1, then ~ j  < 0 when 0 < v0 M-2  < 1. This means that if the directions of the mass force and 

the slip velocity are the same, then the appearance of negative dissipation in a subsonic or supersonic flow depends 

on the magnitude of the fraction vo/M 2=  vzy / (TF ). 

We also indicate that the parabolic-type (of the second power) dependence of the negative dissipative 

function on the Froude number  has a maximum in a supersonic flow (1 < M 2 < 2) at the point z = z 1 for which 

1 (M 2 - 2)  
% - - 1 +  < 0 .  

2 (1 + E1 (zl)) 
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In the remaining cases the function ~ = ~ ( v  0) < 0 is monotonic. In the given solution the viscous tangential stress 

is l inearly related to the Froude number; therefore, the function ~ ( r l  2) is also parabolic. Figures 2 and 3 illustrate 

the dimensionless dependences of the temperature (dashed lines), heat flux q'= q~ ( - q b ) ,  and dissipative function 

on viscous stress for viscoelastic fluids with Fourier thermal conductivity (Fig. 2) and with thermal relaxation 

(Fig. 3), Yl/Y = 0.3. It was assumed in the calculations that Pr  = 5, q ] / ( - q b )  = 0.1. Shown here  are three examples: 

I. M 2 = 3; v 0 = - 1 ;  II. M 2 = 3; vo ~ - 3 ;  III. M 2 = 1/4; v0 = 0.1. Two cases represent a supersonic flow and the 

third case gives a subsonic flow, with ~ ]  < 0 in each variant. The  arrow along the curves indicates the direction of 

evolution of the corresponding function from its initial value on the right discontinuity h i = 0 toward the left 

boundary h = hs. In example III the dissipative function increases monotonically in the interval [ -0 .02 ;  0.27 ] (not 

shown in Fig. 3). When Yl = 0, 7 > 0, the subsonic and supersonic variants are described by monotonic dependences 

and differ from each other  by the directions of convexity and by the angles (obtuse and acute) of inclination of the 

curves to the axis of stresses. 

Heat-f lux relaxation changes the temperature field substantially (Fig. 3): T and q become nonmonotonous 

functions of the tangential stress. An increase in I v01 changes the quantitative characteristics of hydrodynamic  and 

thermal fields: this effect is especially strong when 71 > 0. 

If s l l  ~ 0 and the pressure is variable in the ]-region, a solution can be obtained in quadratures  and in 

e lementary functions for particular values of the Mach number (for example, M 2 = 0.5; 2). For the given flow the 

condition that ~1 < 0 coincides with an isobaric case. 

Let us summarize the results. We presented model theoretical concepts that make it possible to judge the 

possibility of the existence of alternating-sign dissipative heat generation in an incompressible fluid flow. The 

investigation is based on an analysis of the class of Eq. (8)-type motions in the presence of a strong hydrodynamic  

discontinuity. Two models of heat t ransfer  are considered: Fourier heat conduction and Maxwell-relaxing heat 

flux. The  relaxation of viscous stresses is a necessary condition of the negative dissipative function. If a mass 

force is absent,  the anomaly ~ < 0 is possible when M 2 > 1. A mass force whose direction is orthogonal to that 

of the discontinuity motion has a substantial effect on energy dissipation in a Maxwel l -Oldro id  fluid. The  quantity 

v2]/(~,F), which character izes  the mutual orientat ion of the mass force and the fluid velocity vectors on the 

discontinuity, is a quantitative criterion here. 

N O T A T I O N  

x 1 = x, X 2 = y, Cartesian rectangular coordinates; t, time; Vl, v2, velocity vector components;  p, pressure; 

p, density; T, temperature;  ql, q2, components of specific heat flux vector; rq, components of stress tensor deviator; 

eq ,components of deformation rate tensor; 2coq = (Ovi/Ox j) - (Ovj/Oxi) ; F, mass force; co, specific heat; 7, 

relaxation time of viscous stresses; Yl, relaxation time of heat flux;/~, dynamic viscosity coefficient; v = /~ /p ;  2, 

thermal conductivity coefficient; w, vorticity; M, viscoelastic Mach number, M 2 = (a - b)2/w2; M l, "thermal" Mach 

number,  M21 = (a - b)2 /w2;  w 2 = v /7 ;  w~ = , t /  (pcp?l); {1"} = fl - f2, jump of the function in passing through 

discontinuity; N -- - a ,  displacement rate of discontinuity; ~ ,  dissipative function. Superscripts and subscripts: a 

point above the sign of the function denotes differentiation with respect to its argument,  the repeating index denotes 

summation; *, parameters  of fluid before discontinuity; **, parameters of fluid behind second discontinuity; j and 

s, values of functions on the right and lefl boundaries of the region between two discontinuities; oo, parameters  of 

the fluid at an infinite distance from the discontinuity; b, scales of quantities. 
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